★★★★☆
3.5 étoiles sur 5 de 669 notes
2010-01-18
Fundamentals of Computational Neuroscience - de Thomas Trappenberg (Author)
Details Fundamentals of Computational Neuroscience
Le tableau suivant contient les données utiles du Fundamentals of Computational Neuroscience
Le Titre Du Fichier | Fundamentals of Computational Neuroscience |
Date de publication | 2010-01-18 |
Traducteur | Doulton Ragavi |
Nombre de Pages | 802 Pages |
La taille du fichier | 49.40 MB |
Langue du Livre | Français et Anglais |
Éditeur | Thames & Hudson |
ISBN-10 | 6742247604-PEH |
Format de Données | EPub AMZ PDF DOTX XHTML |
Auteur | Thomas Trappenberg |
EAN | 396-2279755608-PON |
Nom de Fichier | Fundamentals-of-Computational-Neuroscience.pdf |
Télécharger Fundamentals of Computational Neuroscience Livre PDF Gratuit
Computational neuroscience is the theoretical study of the brain to uncover the principles and mechanisms that guide the development organization information processing and mental functions of the nervous system Although not a new area it is only recently that enough knowledge has been gathered to establish computational neuroscience as a
Les meilleures offres pour Fundamentals of Computational Neuroscience Thomas Trappenberg 2 Anglais Broche sont sur eBay Comparez les prix et les spécificités des produits neufs et doccasion Pleins darticles en livraison gratuite
Learn online and earn valuable credentials from top universities like Yale Michigan Stanford and leading companies like Google and IBM Join Coursera for free and transform your career with degrees certificates Specializations MOOCs in data science computer science business and dozens of other topics
Noté 005 Retrouvez Fundamentals of Computational Neuroscience by Trappenberg Thomas 2010 Paperback et des millions de livres en stock sur Achetez neuf ou doccasion
Computational neuroscience is the theoretical study of the brain to uncover the principles and mechanisms that guide the development organization information processing and mental functions of the nervous system
Several theories aim to account for this fundamental property one of the most popular being reinforcement learning also used in artificial intelligence This theory postulates that learning emerges through a specific reinforcement of connections between neurons that are active during an event an action or a sequence of events and actions leading to a reward One of the key points of this
English version Computational neuroscience combines experimentation and modeling in the exploration of the causal mechanisms responsible for the major functions of the brain perception cognition motor skills their learning and their dysfunctions